Item P-401, Item P-501 Quality Control, Acceptance Criteria, PWL Concepts

2006 March FAA Southwest Region Partnership Conference

Jeff Rapol, Airport Engineering Division, AAS-100

jeffrey.rapol@faa.gov

Presentation Objectives

- Clarify the process that ESTIMATES
 Contractor Production Quality using Lot samples.
- Provide brief explanation of PWL concepts and why there is a degree of uncertainty (risk) associated with acceptance plans when small fractions of material are used to evaluate a day's production. (AC 5370-10 Section 110)

Quality Control—Hot Mix and PCC

- Responsibility of Contractor
- Contractor controls processes.
- General Provision Section 100 requires a Contractor Quality Control Program when P-401 or P-501 in the project.
- Specification Items P-401 and P-501 contain minimum items to be included in the Contractor Quality Control Program.

Quality Control—Hot Mix and PCC

- Addresses labs and technicians.
- Processes include lab production, plant production, and field placement.
- Some processes require the Contractor to use statistical quality control measures (run charts and range charts).

FAA Acceptable Quality

- Item P-401 and Item P-501--FAA assumes process control parameters that are "not unreasonable" for mat density, joint density, air voids, strength, and thickness.
- All acceptance criteria is based on processes with variation in quality conforming to a normal "bell" curve.
- Each day's production is evaluated and pay is based on daily evaluation of 4 random samples.

Risk at Acceptable Quality P-401

Risk at Rejectable Quality P-401

Risk at Acceptable Quality P-501

Risk at Rejectable Quality P-501

FAA Pay Adjustment Schedule Helps Balance Risk Levels

Percentage of Material Within Specification Limits (PWL)	Lot Pay Factor (Percent of Contract Unit Price)		
96-100	106		
90 - 95	PWL + 10		
75 - 90	0.5 PWL + 55		
55 - 74	1.4 PWL - 12		
Below 55	Reject		

Quality Level "Q" vs. "z" Small Sample Theory

Quality Level "Q" = Lot Average - Lower Spec. Limit

Lot Standard Deviation

Small Sample Theory:

At 90 PWL "Q" = 1.200 when sample size, n = 4

At 90 PWL "Q" = 1.254 when sample size, n = 8

At 90 PWL "Q" = 1.267 when sample size, n = 16

At 90 PWL "Q" = 1.275 when sample size, n = 32

At 90 PWL "Q" = 1.278 when sample size, n = 64

At 90 PWL "Q" = z = 1.282 when sample size, n = 1.282 infinity

PWL Acceptance Limits

Q = Lot Average - Lower Spec. Limit
Lot Standard Deviation

4 sublots per LOT:

At 90 PWL Q = 1.200 for n=4

POPULATION:

At 90 PWL Q = z = 1.282 for $n = \infty$

Item P-401 Acceptance Limits

Stability
$$2150 - 1800 = 1.30 > 1.28$$

270

Mat Density
$$98.0 - 96.3 = 1.32 > 1.28$$

1.3

Joint Density
$$96 - 93.3 = 1.29 > 1.28$$

2.1

Air Voids
$$5-4.2 = 1.23$$
 $2.8-2 = 1.23$ 0.65

Outlier Check ASTM E 178

Outlier Determination for Mat Density.

Density of four random cores taken from Lot

98.9 Average = 97.65 98.5 Sample s = 1.79 98.2 n = 4 95.0 PWL = 76 (93% lot pay

factor)

Q = Lot Average - Lower Spec. Limit
Lot Standard Deviation

Outlier Check ASTM E 178

Outlier Determination for Mat Density.

E-78 with n=4, 5 percent significance level, critical value for test criterion= 1.463 Compare

Max (98.9 - 97.65) / 1.79 = 0.70 < 1.463No

Min (97.65 - 95.0) / 1.79 = 1.48 > 1.463Yes

Outlier Check ASTM E 178

Recalculate PWL after eliminating outlier

Density of 3 random cores taken from Lot A. 98.9

Average = 98.53

98.5 Sample s = 0.351

98.2 n = 3

PWL = 100 (106% lot pay factor)

NOTE: Outliers exist if:

Density greater than (97.65+1.463x1.79), or Density less than (97.65-1.463x1.79)

Lot Average +/- Test Criterion*Lot Standard Deviation are Critical Values

Pay Adjustment Schedule, e.g. Density and Air Voids, Item P-401

Lot Density 90 PWL or Above			ot Densi 5-89 PW		Lot Density Below 55 PWL			
	AND			AND		AND		
Lot Air	· Void P	WL is:	Lot Air Void PWL is:			Lot Air Void PWL is:		
90 or Above	55-89	Below 55	90 or Above	55-89	Below 55	90 or Above	55-89	Below 55
Lot Pay Factor is:		Lot Pay Factor is:			Lot Pay Factor is:			
Higher of the two	Product of the two	50% and total project payment reduced	of the two	Lower of the two	50% and total project payment reduced	payment re		•

ITEM P- 401 Lot Pay Factor vs. Density Required: Example

P- 401 Lot Pay Factor vs. Air Voids Required: Example

March 2006

Expected Pay versus Quality Levels SPONSOR ELECTS 106 % PAY

Expected Pay Factor at Production PWL

	Lot Pay	y Ave	rage in	Long R	un for n	=3 thru	n=8
PWL	Factor	n=3	n=4	n=5	n=6	n=7	n=8
99+	106.0	106.0	106.0	106.0	106.0	106.0	106.0
99	106.0	105.7	105.7	105.9	105.8	105.9	105.9
98	106.0	105.3	105.2	105.4	105.4	105.5	105.5
96	106.0	104.0	104.1	104.4	104.4	104.4	104.5
95	105.0	103.1	103.6	103.9	103.8	103.9	104.0
90 AQL	100.0	100.1	100.2	100.8	100.8	101.0	101.0
85	97.5	94.5	96.3	97.4	97.4	97.5	97.6
80	95.0	89.9	91.3	92.5	92.6	93.0	93.3
75	92.5	85.4	86.5	87.5	87.7	88.2	88.5
70	86.0	80.8	81.6	82.1	82.4	82.6	83.0
65	79.0	76.4	76.7	76.6	76.9	77.0	77.1
60	72.0	72.1	72.0	71.1	71.6	71.4	71.3
55 RQL	65.0	68.2	67.7	66.2	66.5	66.0	65.7

Southwest Region Partnership Conference March 2006

Expected Pay versus Quality Levels SPONSOR ELECTS 100 % PAY

Expected Pay Factor at Production PWL

	Lot Pay	y Ave	erage in	Long R	un for n	=3 thru	n=8
PWL	Factor	n=3	n=4	n=5	n=6	n=7	n=8
99+	106.0	100.0	100.0	100.0	100.0	100.0	100.0
99	106.0	100.0	100.0	100.0	100.0	100.0	100.0
98	106.0	100.0	100.0	100.0	100.0	100.0	100.0
96	106.0	100.0	100.0	100.0	100.0	100.0	100.0
95	105.0	100.0	100.0	100.0	100.0	100.0	100.0
90 AQL	.100.0	100.0	100.0	100.0	100.0	100.0	100.0
85	97.5	94.5	96.3	97.4	97.4	97.5	97.6
80	95.0	89.9	91.3	92.5	92.6	93.0	93.3
75	92.5	85.4	86.5	87.5	87.7	88.2	88.5
70	86.0	8.08	81.6	82.1	82.4	82.6	83.0
65	79.0	76.4	76.7	76.6	76.9	77.0	77.1
60	72.0	72.1	72.0	71.1	71.6	71.4	71.3
55 RQL	65.0	68.2	67.7	66.2	66.5	66.0	65.7

Southwest Region Partnership Conference March 2006

FR	OM E	ngr. Bri	ef No. 50	Production Values Needed to				
						Achieve Quality Level, Using		
				FAA Model Assumptions				
				Item P-401	Item P-501			
	Prol	oability	of Achie	Density	Strength			
			Factor of	$\mu = 98.0\%$	$\mu = 675$			
PWL	106	≥100	≥97.5	≥95	≥92.5	$\sigma = 1.3\%$	$\sigma = 55$	
						L=96.3%	L=604.5	
99	0.93	0.96	0.98	0.99	1.00	99.32	732	
98	0.87	0.92	0.96	0.98	0.99	98.97	717	
97	0.81	0.88	0.93	0.96	0.98	98.75	708	
96	0.76	0.84	0.90	0.94	0.97	98.58	701	
95	0.72	0.80	0.86	0.92	0.96	98.44	695	
94	0.68	0.76	0.83	0.89	0.94	98.32	690	
93	0.64	0.73	0.80	0.87	0.92	98.22	686	
92	0.60	0.69	0.77	0.84	0.90	98.13	682	
91	0.57	0.66	0.74	0.81	0.88	98.04	678	
90	0.53	0.63	0.71	0.79	0.86	97.97	675	

FAA ACCEPTANCE –Lot pay equation has an advantage up to 96 PWL

Lot-Basis, n=4 sublots per lot.

Mat Density— Contractor target >=98.5%

Joint Density – Contractor target >=96.5%

Air Voids – Contractor target ~ 3.5%

Strength –Achieve 8.5% Coefficient of Variability or Increase Over design Amount.

Thickness -- 3/8" or better.

Workshop Interaction

Workshop Interaction

90 PWL Density Distribution, Production Target Density = 98% L = 96.3%Total = 22522 Total at or below L = 2820 20 98.7 99.0 99.7 100.0 100.3 100.7 98.0 96.0 96.3 98.3 95.3 Average = 98%, Standard Deviation = 1.3%

NUMBER OF LOTS PER PROJECT VS. MINIMUM EXPECTED PAY CONTRACTOR TARGETS PRODUCTION AT 90 PWL, 93 PWL, 96 PWL 95% PROBABILITY CURVES

Estimating the Standard Deviation of a Population (σ)—Analogous to estimating the Target Production Standard Deviation

When we wish to refer to the standard deviation of an underlying universe or parent population (target production), we use the symbol σ . In the construction process the true value of σ (target production standard deviation) is usually unknown. However, it is possible to estimate σ by using a (lot) sample (or series of (lots) samples) as follows:

 $\sigma = s / c_2$

Where s is the standard deviation of a (lot) sample of a given size (e.g. n=4), and c_2 , is a factor which varies with (lot) sample size as shown in the table. E.g., c_2 for a (lot) sample size, n=4, is 0.7979.

Sample Size	\mathbf{d}_2	\mathbf{c}_2
3	1.693	0.7236
4	2.059	0.7979
5	2.326	0.8407
6	2.534	0.8686
7	2.704	0.8882
8	2.847	0.9027

Excerpt from Statistical Quality Control Handbook, Eleventh Printing—Copyright 1956 by Western Electric Co, Inc, Renewed 1984 by AT&T Technologies, Inc., page 131 paraphrased to apply to Lot acceptance.

Southwest Region Partnership Conference March 2006